Senior Machine Learning Engineer (Remote-Eligible)

Deal Score0
Deal Score0

Website Capital One

Center 2 (19050), United States of America, McLean, Virginia

Senior Machine Learning Engineer (Remote-Eligible)

As a Capital One Machine Learning Engineer (MLE), you’ll be part of an Agile team dedicated to productionizing machine learning applications and systems at scale1-on-1 mentorship, training and advice to help users land their next job. Pay only if you succeed in getting hired and start work at a high-paying job first. You’ll participate in the detailed technical design, development, and implementation of machine learning applications using existing and emerging technology platformsAd:

Ready to find your dream job? Click here.

You’ll focus on machine learning architectural design, develop and review model and application code, and ensure high availability and performance of our machine learning applications You’ll have the opportunity to continuously learn and apply the latest innovations and best practices in machine learning engineeringAd:

Unsure about your career? Use this free career assessment test to figure it out.

Capital One is open to hiring a Remote Employee for this opportunity

What you’ll do in the role:
• The MLE role overlaps with many disciplines, such as Ops, Modeling, and Data Engineering1-on-1 mentorship, training and advice to help users land their next job. Pay only if you succeed in getting hired and start work at a high-paying job first. In this role, you’ll be expected to perform many ML engineering activities, including one or more of the following:
• Design, build, and/or deliver ML models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teamsAd:

Stop spending hours editing your resume to fit job descriptions. 1,000,000+ job seekers have improved their odds of landing an interview by 80%. Optimize my resume now.

• Inform your ML infrastructure decisions using your understanding of ML modeling techniques and issues, including choice of model, data, and feature selection, model training, hyperparameter tuning, dimensionality, bias/variance, and validation)
• Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment
• Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art big data and ML applications
• Retrain, maintain, and monitor models in production
• Leverage or build cloud-based architectures, technologies, and/or platforms to deliver optimized ML models at scale
• Construct optimized data pipelines to feed ML models
• Leverage continuous integration and continuous deployment best practices, including test automation and monitoring, to ensure successful deployment of ML models and application code
• Ensure all code is well-managed to reduce vulnerabilities, models are well-governed from a risk perspective, and the ML follows best practices in Responsible and Explainable AI
• Use programming languages like Python, Scala, or Java

Basic Qualifications:
• Bachelor’s degree
• At least 4 years of experience programming with Python, Scala, or Java (Internship experience does not apply)
• At least 3 years of experience designing and building data-intensive solutions using distributed computing
• At least 2 years of on-the-job experience with an industry recognized ML frameworks (scikit-learn, PyTorch, Dask, Spark, or TensorFlow)
• At least 1 year of experience productionizing, monitoring, and maintaining models

Preferred Qualifications:
• 1+ years of experience building, scaling, and optimizing ML systems
• 1+ years of experience with data gathering and preparation for ML models
• 1+ years of experience using AI to write code
• 2+ years of experience developing performant, resilient, and maintainable code
• Experience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud Platform
• Doctoral degree in computer science, machine learning, mathematics, physics or a similar field
• 3+ years of experience with distributed file systems or multi-node database paradigms
• Contributed to open source ML software
• Authored/co-authored a paper on a ML technique, model, or proof of concept
• 3+ years of experience building production-ready data pipelines that feed ML models
• Experience designing, implementing, and scaling complex data pipelines for ML models and evaluating their performance

At this time, Capital One will not sponsor a new applicant for employment authorization for this position

The minimum and maximum full-time annual salaries for this role are listed below, by location Please note that this salary information is solely for candidates hired to perform work within one of these locations, and refers to the amount Capital One is willing to pay at the time of this posting Salaries for part-time roles will be prorated based upon the agreed upon number of hours to be regularly worked

Location is New York City

– $156,596 and $184,748 for Senior Machine Learning Engineer

Candidates hired to work in other locations will be subject to the pay range associated with that location, and the actual annualized salary amount offered to any candidate at the time of hire will be reflected solely in the candidate’s offer letter

No agencies please Capital One is an Equal Opportunity Employer committed to diversity and inclusion in the workplace All qualified applicants will receive consideration for employment without regard to sex, race, color, age, national origin, religion, physical and mental disability, genetic information, marital status, sexual orientation, gender identity/assignment, citizenship, pregnancy or maternity, protected veteran status, or any other status prohibited by applicable national, federal, state or local law Capital One promotes a drug-free workplace Capital One will consider for employment qualified applicants with a criminal history in a manner consistent with the requirements of applicable laws regarding criminal background inquiries, including, to the extent applicable, Article 23-A of the New York Correction Law; San Francisco, California Police Code Article 49, Sections 4901-4920; New York City’s Fair Chance Act; Philadelphia’s Fair Criminal Records Screening Act; and other applicable federal, state, and local laws and regulations regarding criminal background inquiries

If you have visited our website in search of information on employment opportunities or to apply for a position, and you require an accommodation, please contact Capital One Recruiting at 1-800-304-9102 or via email at RecruitingAccommodation@capitalonecom All information you provide will be kept confidential and will be used only to the extent required to provide needed reasonable accommodations

For technical support or questions about Capital One’s recruiting process, please send an email to Careers@capitalonecom

Capital One does not provide, endorse nor guarantee and is not liable for third-party products, services, educational tools or other information available through this site

Capital One Financial is made up of several different entities Please note that any position posted in Canada is for Capital One Canada, any position posted in the United Kingdom is for Capital One Europe and any position posted in the Philippines is for Capital One Philippines Service Corp (COPSSC)

To apply for this job please visit www.themuse.com.

The Tech Career Guru
Tech Jobs Here
Logo

Get Alerts on the Latest Job Posts in your Inbox- Daily!

 

 



 

We will not spam you. Don't forget to add us to your contacts!